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1 Probabilities

A probability space is a triplet (Ω,F , P ) where:

� Sample space Ω: set of all possible outcomes ω ∈ Ω.

� Set of events F , any A ∈ F is called an event, we have that A ⊆ Ω with following
properties:

� ∅ ∈ F
� A ∈ F ⇒ Ac ∈ F
� A1, A2, .... ∈ F ⇒ ∪iAi ∈ F

� Probability measure P : F → R with following properties:

1. P (A) ≥ 0 for all A ∈ F
2. P (Ω) = 1

3. If A1, A2, .... possibly in�nite, are disjoints (i 6= j ⇒ Ai ∩ Aj = ∅) then
P (∪iAi) =

∑
i P (Ai)

From there we can derive several properties:

� A ⊆ B ⇒ P (A) ≤ P (B)

� P (A ∩B) ≤ min{P (A), P (B)}

Two simple examples

Discrete. Think of the tossing a six-sided die, then Ω = {1, 2, 3, 4, 6}, the most general
F is the power set of Ω (all possible combinations) and P is simply de�ned in the case
of a fair die as the length of the event since each individual outcome can be attributed a
given mass probability.

Continuous. Think of spinning a bottle where the angle is the outcome. Again let's
think of a fair spin. In this case Ω = [0, 2π]. Now F and P are more interesting here.
We can't construct this probability measure from the probability of each point since we
would want that for any ω ∈ Ω, the probability of such event should be 0! What we would
want is for F , P to be compatible with a simple notion of mass such that any interval
[a, b] is in F andP ([a, b]) = a− b. One can achieve this in this framework by de�ning F
as the set of all open sets in [0, 2π] and de�ne P exactly such that for any segment [a, b)
we have that P ([a, b)) = a − b. This σ-algebra generated by all open intervals is called
the Borel measure (or the Lesbegue measure when all ω singletons are also included).
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Using power set for F - Vitali sets This could be a tempting idea, however in the
case where Ω is a continuum, the power set includes sets that can't be assigned a measure
without generating contradictions. The Vitali sets are such sets. Intuitively, the Vitali
sets split the [0, 1] line into an in�nite but countable group of sets. These sets turn are
also translation of each other, which means that if Lesbegue measurable, they will have
the same measure. Now, if this measure is 0 then [0, 1] would have measure 0, which
is not true. If the measure of each set if ε > 0, by countable reunion, [0, 1] would have
measure∞ which is also not true. Hence they can't be measurable, and can't be included
in F .

1.1 Independence

� Two events A,B ∈ F are independent iif P (A ∩B) = P (A) · P (B).

� Two σ-algebras F1 and F2 are independent iif P (A ∩ B) = P (A) · P (B) ∀A ∈
F1, B ∈ F2

1.2 Random variables

De�nition 1. A real random variable X is a function X : Ω→ R such that ∀r ∈ R, {ω :
X(ω) ≤ r} ∈ F .

In this case we say that X is measurable with respect to F . If the condition is not
satis�ed it is as if X would provide a �thiner� cut of omega in the sense that some event
would have ambiguous values. This becomes clearer when we de�ne the expectation.

Note. This can be generalized to many sets beyond R. In particular we can think of
multidimensional random variables. TBD.

Distribution function for random variables

For a random variable X on (Ω,F , P ) we can de�ne the CDF function as:

FX(x) = P ({X ≤ x})

where the event (X ≤ x) ∈ F for sure since X is a random variable (see de�nition). In
the case where FX(x) is di�erentiable, one can introduce the PDF that for A ∈ F we
have:

Pr[X ∈ A] =

∫
A

fdP =

∫
ω∈A

X(ω)P (dω)

where the integral is de�ned on level sets. In many cases it is equivalent to the Riemann
integral which we know best as:

Pr[X ∈ A] =

∫
x

f(x)dP (x)

and gives

FX(x) =

∫ x

0

fX(u)du

We can then de�ne independence between random variables.
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� Two r.v. X,Y are independent if FX,Y (x, y) = Fx(x) · Fy(y)

Expectations, moments, conditional expectation

We also de�ne the expectation operator:

E(X) =

∫
XdP

which in the case of discrete reduces to summing over the di�erent events:

E(X) =
∑
ω∈Ω

X(ω)P (ω)

and in the continuous case means summing over the level sets of X

E(X) =

∫
X(ω)P (dω)

we can then introduce more generally moments, such that for any measurable function
g we have :

E(g(X)) =

∫
g(X(ω))P (dω)

and note in particular that

E(1[X ≤ x]) = FX(x)

Conditional Expectations

We commonly want to consider the realization of events conditional on another event
having realized. For a sub-event set F2 (which needs to satisfy the properties listed at
the beginning, meaning being a σ-algebra on Ω) we can de�ne E(X|F2) as the unique
function that satis�es: ∫

A

E(X|F2)dP =

∫
A

XdP ∀A ∈ F2

which using the indicator function can help us de�ne the condition CDF for any random
variable:

FX|Y=y(x) =

∫
A

E(1[X ≤ x]|F2)dP

� todo: Optimality properties of conditional expectations

� todo: Conditioning as factorization
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Expectation, Variance, Covariance

De�nitions

V ar(X) = E(X − E(X))2

Cov(X,Y ) = E(X − E(X))(Y − E(Y )

we have the following properties:

E[X] = E[E[X|Y ]]

V ar[X] = EV ar[X|Y ] + V ar[E[X|Y ]]

and of course:

E(X + Y ) = E(X) + E(Y )

V ar(X + Y ) = V ar(X) + V ar(Y ) + 2cov(X,Y )

1.3 Change of variables, function of a random variable

Let's �rst look at a one dimensional random variable, We consider the random variable
Y = g(X) for g increasing and seek its CDF and PDFs

We start from the de�nitions:

FX(x) = Pr[X ≤ x] = Pr[g(X) ≤ g(x)] = Pr[Y ≤ g(x)]

fX(x) = g′(x)fY (g(x))

In the context of many variables we get that:

fY (y) =
1

g′(g−1(y))
fX(g−1(x))

For the multivariate case, consider Y = r(X), then

fY (y) = fX(x)

∣∣∣∣det(dxdy
)∣∣∣∣

where (
dx

dy

)
ij

=
∂xi
∂yj

Let's look at a simple example. Consider indexing points on a disk, and think of the
uniform distribution.

fXY (x, y) =
1

π
∀x2 + y2 ≤ 1

and next we want to consider the polar coordinates. This is the following transformation:

x = r · cos(θ)

y = r · sin(θ)
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we then compute
dx

dy
=

[
cos θ −r · sin θ
sin θ r · cos θ

]
which gives a determinant of r cos θ2 + r sin θ2 = r and so we get that

frθ(r, θ) =
r

2π

� examples: The paradox of the three jewelry boxes

� link: http://www.math.uah.edu/stat/dist/Transformations.html#cov4

Manifestation of the Borel-Kolmogorov paradox Indeed, here notice that when
conditioning on θ = 0 the radius r is equal to x when we condition on y = 0. However, we
see that frθ is proportional to r whereas fxy is just 1/π. Why is it not a paradox? Density
functions are de�ned with respect to a measure, and when conducting a change of variable
and setting y = 0 in one case and θ = 0 in the other, we end up with 2 di�erent conditional
measures. In other words, how we narrowed to the set {(x, y) st. y = 0} matters. This
problem arises only when one conditions on a set of measure 0. Note that it remains true
that for any subset A of the circle we still have that

∫
A
frθ(r, θ)drdθ =

∫
A
fxy(x, y)dxdy,

even when A = {(x, y) s.t. θ = 0} since we get 0 on both sides. Another way to think
about it is to ask the question how was the set {(x, y) st. y = 0} picked, was it picked
by randomly picking y or was it chosen by randomly picking θ. Each approach delivers a
di�erent conditional density.

1.4 Notions of convergence

We introduce 3 notions of convergence among random variables:

� Convergence in distribution Xn
d→ X iif P (Xn ≤ x)→ P (X ≤ x) for all x

� Convergence in probability Xn
p→ X iif P (||Xn −X|| > ε)→ 0 for all ε

� Convergence almost surely Xn
a.s.→ X iif P (limn→∞ ||Xn −X|| = 0) = 1 for all ε

Example �An example is if your random variables are just the characteristic functions
of intervals determined by the angles [n, n+1/n). The area of non-convergence to zero is
1/n which goes to zero in length, but each given point on the circle will be 1 in�nitely
many times, so the set of points where convergence does not happen has measure 1.�

1.5 Characteristic Functions for random variables

An important transformation of random variables is the characteristic function. For a
given random variable X with k dimensions is it given by

t 7→ Eeit
ᵀX , t ∈ Rk

properties:
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� Xn
d→ X iif EeitᵀXn → EeitᵀX point-wise in t (Levy's continuity Theorem)

� A normal distribution N (µ,Σ) has characteristic function eit
ᵀµ− 1

2 t
ᵀΣt

� EXn = ∂n

∂tnφx( ti ) = EetᵀX is the moment generating function (se example for the
normal distribution)

� φx(t) = 1 + itEX + (it)2

2! EX2 + (it)3

3! EX3.....

1.6 The law of large numbers

we now use the characteristic functions to establish an important result, the fact that
1
n

∑
iXi

p→ µ

EeitX̄n =
(
Eei

t
nX
)n

=

(
1 + i

t

n
µ+ o(

1

n
)

)n
→ eitµ

We get that the series of random variable formed of the average converges to the true
mean of these random variables.

1.7 The central limit theorem

perhaps more surprisingly is how this sequence converges to in distribution towards this
constant: (assumes iid, mean is 0 and varianceEX2)

Eeit
√
nX̄n =

(
Eei

t√
n
X
)n

=

(
1 + 0− 1

2

t2

n
EX2 + o(

1

n
)

)n
→ e−

1
2 t

2EX2

2 Models, parameters and objects of interest

Now that we have clear concepts of probability we move to our main goal which is to
learn about models using data. We start by de�ning a population representation of
our data which we denote in general as F (Y,X). From this population object we will
consider samples. A sample is a sequence of random variables with some connection to
the population object F (Y,X). Here we will focus on random samples (and panel samples,
see later), meaning that we have n independent draws (Yi, Xi)i=1..n from F (Y,X). The
next step is to develop a model for our data F (X,Y ). A model will simply be a class of
data generating processes indexed by a parameter θ (potentially of in�nite dimension). In
general we can denote a model as M = {F (Y,X; θ), θ ∈ Θ}. It will be quite common for
a model to introduce variables are not directly observed in the data (or population data).
For instance it might introduce a residual with statistical properties. Going forward, we
will continuously make the distinction between observable and non-observable variables.

Example 2. A linear model for F (Y,X) can be de�ned as M = {Y = βX+ ε; (β, FXε)}.
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We see that such a model might restrict strongly the set of possible generated data.
In addition in introduces the variable ε. Using this example, consider a restricted class
that does not assumes additive error M = {Y = f(X, ε); (f, Fxε)}. Here the parameters
are the joint distribution Fε,X(ε, x) and some function f0. There will be two main set of
task that econometricians/statisticians will be interested in:

1. In support prediction: This is concerned with quantifying events that only rely
on conditioning on observable quantities. For example given a generative model such

as M = {Y = f(X, ε); (f, Fxε)} and a parameter guess (f (1), F
(1)
xε ) the researcher

would like to get an as good as possible prediction for Yi given the value Xi. The
researcher could care about the following quantity:

||Y − f(X, 0)||

2. Causal e�ect & out of support predictions: This is concerned with quantifying
events that might rely on conditioning on variables that are unobserved OR with
quantifying e�ects for combinations of observable variables that are not seen in the
data.

There is an extremely popular model that clari�es notion of causal e�ect, the potential
outcome model. Consider an outcome Y and a binary treatmentT . The population is
then given by F (Y, T ). Next consider a model where Yi = αi + βiTi + εi. We actually
allow for the e�ect of the treatment to be heterogenous. A prediction question could be
to ask what is the average value of Yi for each of the treatment values T = 0, 1. It is
relatively easy in the this context as one could simply look at the realized distribution.
Often prediction questions will become di�cult when the conditioning set becomes very
large. A causal question however would be to ask what is E [βi|T = 1] which is the average
treatment e�ect on the treated.

Application: class size Let's consider an actual economic question that has been
studied. Researchers have long wondered about the e�ect of class sizes on children per-
formance.

2.1 Identi�cation

The �rst notion that we want to introduce is the notion of identi�cation. It addresses
the question of whether we can hope to recover the parameters of a Model from observed
data.

De�nition 3. For a given M = {F (Y,X; θ), θ ∈ Θ} we say that θ is identi�ed with

respect to F (Y,X) iif there a unique θ∗ such that F (Y,X; θ∗)
d
= F (Y,X).

This has a simple corollary which states that if two parameters generate observation-
ally equivalent distribution, then the model is not identi�ed. Two important points to
note:

1. identi�cation is a statement about bout the model class jointly with the data
F (Y,X)
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2. identi�cation is an argument about the population object F (Y,X) not about a �nite
sample coming from it.

Going further, people have developed theory about partially identi�ed model. For
instance it might not be impossible to pin point exactly f from the data in an particular
model class, but it might be possible to pin down it's sign. In general we can think about
a feature g(θ) of a model as being identi�ed w.r.t. F (Y,X).

2.2 Samples and Inference

Of course in general we do not have the population object F (Y,X), we have a sample
(Yi, Xi)i=1..n. We are then interested in learning about the parameters of our model θ
using this sample. To achieve that task we introduce estimators. An estimator a function
of sample.

θn = µ({Yi, Xi}i=1..n)

We then set ourselves with an identi�ed model M = {F (Y,X; θ), θ ∈ Θ} w.r.t to
F (Y,X). And we consider an estimator θn. More over we usually consider the case where
the data was generated from that particular model at what we call the true parameter
θ = θ0. When the data is generated according to that DGP, we will write E0

1. We say that θn is unbiased for θ0 i� E0θn = θ0

2. We say that θn is consistent for θ0 i� θn
p0→ θ0

We have seen for instance that in the case of the mean, θn = 1
n

∑
Xi is a consistent

estimator. What about consistency and unbiasedness of the variance estimator?

σ2n =
1

n

∑
(Xi − µn)2

Beyond point estimates of parameters, we are also interested in forming con�dence
intervals on parameters θ. A 1−α con�dence interval is a combination of two estimators
an, cn (function of the data) such that

P (θ ∈ [an, cn]) ≥ 1− α

where θ is �xed and an, cn are the random variables. See the example for a normally
distributed estimator.

We will often consider asymptotic con�dence interval where we will replace the
inequality with a probability limit:

P (θ ∈ [an, cn])
p→ 1− α

Finally we will sometimes be interested in conducting hypothesis testing. We will
come back to that later.

The case of non iid samples

In many cases we want to model the dependence between variables in our sample. In
this case, we need to describe the population in a more complicated way. In general, it
might be necessary to provide a DGP for each sample sizes n. This will be the case when
modeling spatial correlation or when considering �xed-e�ects.
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3 Ordinary Least Squares

Let's apply our machinery and consider the following modelM = {Y = Xβ+ ε; (β, FXε)}
where we are interested in β. X is a k dimension random variable and Xn is a k × n
matrix of data.

First question, is the model identi�ed? We need to restrict further our class! Let's
use conditional mean independence E [ε|X] = 0. We can then derive identi�cation:

(E0XX
′)
−1 E0XY = (E0XX

′)
−1 E0XX

′β0 + (E0XX
′)
−1 E0XEn

= β0 + 0

which shows that β can be recovered from the population data since both E0XX
′ and

E0XY can be computed in the population . We then de�ne the OLS estimator as

βn = (X ′nXn)
−1
X ′nYn

which is a function of a given sample (Yn, Xn).
Is this estimator unbiased?

E0βn = E0 (X ′nXn)
−1
X ′nYn

= E0 (X ′nXn)
−1
X ′n(Xnβ0 + En)

= E0 (X ′nXn)
−1
X ′nXnβ0 + E0 (X ′nXn)

−1
X ′nEn

= β

Is this estimator consistent?

βn = (X ′nXn)
−1
X ′nYn

= (X ′nXn)
−1
X ′nXnβ0 + (X ′nXn)

−1
X ′nEn

= β0 + (X ′nXn)
−1
X ′nEn

= β0 +

(
1

n
X ′nXn

)−1(
1

n
X ′nEn

)
and so we have that

plimβn = β0 +

(
plim

1

n
X ′nXn

)−1(
plim

1

n
X ′nEn

)
then plim 1

nX
′
nEn = plim 1

n

∑
i xiεi = EXε = 0 (under existence of these limits).

Let's conclude with the asymptotic distribution of the estimator, we look at

√
n(βn − β) =

√
n (X ′nXn)

−1
X ′nEn

=

(
1

n
X ′nXn

)−1(
1√
n
X ′nEn

)
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Table 1: Clustering standard errors

we have that 1
nX
′
nXn → EX ′X. Now we should look at the second term. By the

central limit theorem we will converge to

1√
n
X ′nEn =

1√
n

∑
i

x′iεi
d→ N (0,EX ′nEnE′nXi)

if we are in an iid case then E [E′nEn|Xn]→ σ2Id and so

√
n(βn − β)

d→ N (0, σ2 (EXX ′)−1
)

as we have seen before, we can then use this to construct asymptotic con�dence inter-
vals. There are 2 potential sources of complication. First there might be heteroskedas-
ticity, meaning that the variance might be correlated with X. Second there might be
correlation in the residuals between observations. This is classic in time series where the
error tend to be serially correlated over time. Another case is when errors are serially
correlated because of spacial dependence.

The White estimator uses the residuals directly:

X ′diag(u2
1...u

2
n)X

3.1 Non-iid samples - clustered standard errors

In this case we want to consider a sampling where observations might be correlated to
each other. Going back to our variance expression what we get is

(EXX ′)−1 EXEE′X ′ (EXX ′)−1

Consider for instance the case of the e�ect a treatment across villages. We consider
the outcome variable

To show the e�ect of clustering I borrow the example from ...
We see the problems.

4 Parametric Inference

Here we cover two particular methods used in economics: moments based estimation and
maximum likelihood.

4.1 Maximum likelihood

Let's consider a parametric model

M = {F (X; θ); θ ∈ Θ}
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we de�ne the maximum likelihood function (which is a statistic) by

Ln(θ) =

n∏
i=1

f(Xi; θ)

and the log-likelihood function by

`n(θ) = logLn(θ)

We �nally de�ne the maximum likelihood estimator as

θn = arg max ln(θ)

Example: Mean and variance of a normal distribution. Take f(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 ,

then ln(θ) = −n log σ − nS2

2σ2 − n(X̄−µ)2

2σ2 where S2 = 1
n

∑
(Xi − X̄)2 and µ = 1

n

∑
Xi

and comes from showing that
∑

(Xi − µ)2 = nS2 + n(X̄ − µ)2. One can also write the
likelihood ln(θ) = −n log σ − 1

2σ2

∑
i(Yi − µ)2 and take FOC.

4 important properties of MLE:

1. MLE is consistent

2. MLE is equivarient (if τ = f(θ) then τn = g(θn) is the MLE for τ)

3. MLE is asymptotically normal

4. MLE is e�cient (lowest variance estimator)

Overview of consistency

We �rst introduce the KL distance:

D(f, g) =

∫
f(x) log(

f(x)

g(x)
)dx

where it can be shown that D(f, g) ≥ 0 1 and D(f, f) = 0. Then maximizing `n(θ) is
equivalent to maximizing

Mn(θ) =
1

n

∑
i

log
f(Xi; θ)

f(Xi; θ0)

and by the law of large numbers in converges to

Eθ0
(

log
f(Xi; θ)

f(Xi; θ0)

)
=

∫
log

f(x; θ)

f(x; θ0)
f(x; θ0)dx

= −D(f(·; θ), f(·; θ0))

1By jansen inequality, D(f, g) = Ef log
f(X)
g(X)

= −Ef log
g(X)
f(X)

≥ − logEf
g(X)
f(X)

= 0
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and so we see that as Mn(θ) → −D(f(·; θ), f(·; θ0)), it will be maximized for θ = θ0.,
however showing that the argmax is converging probability requires some conditions.
Write θn = arg maxθMn(θ) and

M(θ0)−M(θn) = Mn(θ0)−M(θn) +M(θ0)−Mn(θ0)

≤Mn(θn)−M(θn) +M(θ0)−Mn(θ0)

≤ sup
θn

|Mn(θn)−M(θn)|+M(θ0)−Mn(θ0)
p→ 0

as long as sup |Mn(θn) −M(θn)| p→ 0, which requires uniform convergence (ieMn(θ)
p→

M(θ) point-wise is not su�cient). With uniform convergence, as long as θ0 is the unique
maximizer of M(·) we get that θn → θ0.

Asymptotic Normality

We �rst de�ne two new objects. We de�ne the score as

s(X; θ) =
∂ log f(X; θ)

∂θ
and the Fisher information as

In(θ) = Vθ

(∑
i

s(Xi; θ)

)
=
∑
i

Vθ (s(Xi; θ))

= n · I(θ)

The main result is on the asymptotic normality of the MLE estimator:

θn − θ0√
1/In(θn)

d→ N (0, 1)

We �rst show that
Eθs(X; θ) = 0

and

I = −E∂
2f(X; θ)

∂θ2
= Es(Xi; θ)s(Xi; θ)

t

We show the �rst one:

Eθs(X; θ) =

∫
∂ log f(x; θ)

∂θ
· f(x; θ)dx

=

∫
1

f(x; θ)

∂f

∂θ
(x; θ) · f(x; θ)dx

=

∫
∂f

∂θ
(x; θ)dx

=
∂

∂θ

∫
f(x; θ)dx = 0

15



To get asymptotic normality we then look at

0 = `′n(θn) ' `′n(θ) + (θn − θ)`′′n(θ)

and so we get

√
n (θn − θ0) '

1√
n
`′n(θ)

1
n`
′′
n(θ)

the numerator has mean 0 and variance I(θ) by the central limit theorem. The
denominator by the law of large numbers converges to

E`′′(θ) = I(θ)

but we have that

E`′′(θ) = E
[
∂2 log f(x; θ)

∂θ2

]
= E

[
∂

∂θ

1

f

∂f

∂θ

]
= E

[
− 1

f2

(
∂f

∂θ

)2

+
1

f

∂2f

∂θ2

]

= −E

[(
∂ log f

∂θ

)2
]

+ E
[

1

f

∂2f

∂θ2

]
= −I(θ) + E

[
1

f

∂2f

∂θ2

]

where we have used that I(θ) = E
[(

∂ log f
∂θ

)2
]
we then show that the second term is

0.

E
[

1

f

∂2f

∂θ2

]
=

∫
∂2f

∂θ2
dx =

∂2

∂θ2

∫
fdx = 0

so in conclusion we get that 1
n`
′′
n(θ)

p→ −I(θ) and �nally we get that

√
n (θn − θ0)

d→ N (0,
1

I(θ)
)

further more we can get an estimator of In(θ) of nI(θ) and show that

(θn − θ0)√
1/In(θn)

d→ N (0, 1)

which allows us to construct con�dence intervals.

4.2 Discrete choices and McFadden Multinomial choice

In this section we introduce a very common model of discrete choices. Consider choices
according to the following utility:

ui(j) = β log(w) + γXi + δZj + εij

and agent choose favorite alternative. Hence each agent chooses

j∗(i) = arg max
j
ui(j)

16



under the assumption that εij is type one extreme value and independent across alterna-
tives we get that

Pr[j∗(i) = j] =
exp (β log(w) + γXi + δZj + εij)∑
j′ exp (β log(w) + γXi + δZj + εij)

Application: Firm with monopsony power

4.3 Dynamic discrete choice

The Bellman principle

There are many situations where decision are dynamic, and made over time. A famous
example is the Bus engine paper of John Rust.

Application: Rust bus engine model. http://people.hss.caltech.edu/~mshum/stats/rust.pdf

4.4 Moment based estimation

Imagine that instead of a likelihood, you can construct a function of the sample Qn(θ)

such that Qn(θ)
u.p.→ Q(θ) and θ0 = arg maxθ′ Q(θ′) (this is an identi�cation condition).

It then seems natural to de�ne the following estimator:

θn = arg max
θ
Qn(θ)

Can we say anything about consistency? Asymptotic normality? we can replicate the

argument from the previous section since here we assume that Qn(θ)
u.p.→ Q(θ). Let's then

think about the asymptotic normality.

∂Qn(θn)

∂θ
= 0 =

∂Qn(θ0)

∂θ
+
∂2Qn(θ0)

∂θ2
(θn − θ0) + ...

so then we can write

√
n (θn − θ0) ' −

(
∂2Qn(θ0)

∂θ2

)−1√
n
∂Qn(θ0)

∂θ

then consider ∂2Qn(θ0)
∂θ2

p→ A0 and
√
n∂Qn(θ0)

∂θ

d→ N (0, B0) we get that

√
n (θn − θ0)

d→ N (0, A−1
0 B0A

−1
0 )

Note that here we do not have the Information matrix equality, hence when compute
our C.I. we need to scale the variance using both �rst and second derivatives.

5 Random e�ect models

We start by considering the random e�ect case where:

F (X) =
∑
k

pkFk(X)

f(x) =

∫
η

f(x|η)g(η)dη

17



Figure 1: Unemployment Duration Dependence

which are usually referred to as latent heterogeneity, or �nite and in�nite mixture models.
The �rst question you might ask is whether in general this is identi�ed? Clearly, in the
case where X ∈ R, we can't separately identify pk and Fk.

5.1 A running example: unemployment hazard rate

Let's consider as a running example the modeling of unemployment duration. Consider
that we are given access to unemployment spells for individuals in a population. This data
comes in the form of a list of durations for each individual. Because a given individual
might have multiple spells, the data has a panel dimension. Our sample is a list of
durations (λi1, λi2, ...)i=1..n.

Our �rst pass would be to consider a simple independent exponential model Pr[λij =
λ] = γ exp(−γλ). This imposes very strong assumptions on the data: independence,
identically distributed and constant hazard rate. When looking at the unemployment
data, we �nd that the constant hazard rate assumption does not seem to hold. From
Eubanks and Wiczer, here is a plot of the hazard rate out of unemployment:

Our exponential model would give a constant value for the hazard rate (show this as
an example). The �rst modi�cation is then to allow for a more �exible parametric model,
without considering individual heterogeneity per se. For instance, we can consider a �nite
mixture of exponentials.

Pr[λij = λ] =
∑
k

pkγk exp(−γkλ)

and with enough components this will �t perfectly the cross-sectional distribution of
unemployment duration. In this case the probability of multiple duration is given by

Pr[λi1 = λ1, ..., λiJi = λJ ] =
∏
j

(∑
k

pkγk exp(−γkλj)

)
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Figure 2: Unemployment Duration Dependence

But this does not tell us about individual heterogeneity, indeed here the mixture over
distribution is way to allow for the distribution to be �exible, but nothing tells us whether
the change in the hazard rate is due to selection (di�erent people with each their own
hazard rate) or due to duration dependence ( it gets harder to �nd a job the longer you are
unemployed). The review paper from Eubanks and Wiczer provides a further analysis:

which suggests that we might want to consider a model with heterogeneity at the
individual level. A large literature has focused on separating duration dependence from
heterogeneity even using single spell data. For the purpose of this lecture we are going
to consider the availability of multi-spell data. We then consider the following model:

Pr[λi1 = λ1, ..., λiJi = λJ ] =
∑
k

pk
∏
j

γk exp(−γkλj)

note the di�erence between this and the previous model where we had the product around.
This model can be extended to include non constant hazard rates using the Weibull
distribution instead where you replace γk exp(−γkλj) by ρkγk(γkλj)

ρk−1 exp(− (γkλj)
ρk):

Pr[λi1 = λ1, ..., λiJi = λJ ] =
∑
k

pk
∏
j

ρkγk(γkλj)
ρk−1 exp(− (γkλj)

ρk)

5.2 Estimation using EM

Consider a �nite mixture model such as the one we just described, where γk captures the
unobserved heterogeneity. And then consider the log likelihood

∑
i

∑
j

log

∑
k

pk
∏
j

γk exp(−γkλij)
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where our parameters of interests are p1...pk and γ1...γk. We could consider directly
maximizing this non linear problem with respect to all variables. But this might get
di�cult. The EM proposes the following two steps:

1. E-step: compute the qi(k) = Pr[αi=αk|yi, θτ ] using the data, the model and the θτ

guess

2. M-step: choose θ to maximize
∑
i

∑
k Pr[ηi=ηk|yi, θτ ] · logPr[yi, ηi|θ]

let's consider what it means in our example. The E-step is relatively simple if we can
easily compute the Pr[αi=αk|yi, θτ ] which we can since we know that in our context

qi(k) = Pr[γi=γk|λi1, λi2, θτ ] =
pkγk exp(−γkλi1) exp(−γkλi1)∑
p ppγp exp(−γpλi1) exp(−γpλi1)

Then the maximization step consist of maximizing
∑
i

∑
k Pr[ηi=ηk|yi, θτ ]·logPr[yi, ηi|θ]

which here is given by

∑
i

∑
k

qi(k) · logPr[yi, ηi|θ] =
∑
i

∑
k

qi(k) ·

log pk
∏
j

γk exp(−γkλij)− µ(
∑
k

pk − 1)


=
∑
i

∑
k

qi(k) ·

log pk + J · log γk −
∑
j

γkλij − µ(
∑
k

pk − 1)


where we need to recover the following parameters p1...pk and γ1...γk, taking the FOC
we get:

pk =

∑
i qi(k)∑

k′
∑
i qi(k

′)

γk =

∑
k qi(k) 1

J

∑
j λij∑

k′ qi(k
′)

Theory behind the EM

We consider a general latent variable model. Denote the augmented data (yi, αi) and the
log-likelihood model is

l(yi) = logPr[yi|θ]

= log
∑
k

Pr[yi, αi=αk|θ]

To understand the EM we start with a parameter guess θτ and we consider the ex-
pression of interest, the log-likelihood. For any k the following is true:

∀k,
∑
i

logPr[yi|θ] =
∑
i

logPr[yi, ηi=ηk|θ]− logPr[ηi=ηk|yi, θ]

We then take the expectation of the previous expression with weights Pr[ηi=ηk|yi, θτ ]
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∑
i

logPr[yi|θ] =
∑
i

∑
k

Pr[ηi=ηk|yi, θτ ] (logPr[yi, ηi|θ]− logPr[ηi|yi, θ])

=
∑
i

∑
k

Pr[ηi=ηk|yi, θτ ] · logPr[yi, ηi|θ]−
∑
i

∑
k

Pr[ηi=ηk|yi, θτ ] · logPr[ηi|yi, θ]

= Q(θ|θτ ) +H(θ|θτ )

The EM algorithm then consists of 2 steps:

1. E-step: compute the qi(k) = Pr[ηi=ηk|yi, θτ ] using the data, the model and the θτ

guess

2. M-step: choose θ to maximize Q(θ|θτ ) =
∑
i

∑
k Pr[ηi=ηk|yi, θτ ] · logPr[yi, ηi|θ]

The proof that the EM algorithm is always increasing compares the likelihood at θτ and
θτ+1. Expand both with Pr[ηi=ηk|yi, θτ ] to get the di�erence equal to:∑
i

logPr[yi|θτ+1]−
∑
i

logPr[yi|θτ ] =
(
Q(θτ+1|θτ )−Q(θτ |θτ )

)
+
(
H(θτ+1|θτ )−H(θτ |θτ )

)
,

where we have that Q(θτ+1|θτ ) − Q(θτ |θτ ) ≥ 0 since θτ+1 is chosen to maximize
that quantity Q(θ|θτ ). A closer look at H(θ|θτ ) −H(θτ |θτ ) reveals that it is minus the
Kullback�Leibler divergence between Pr[ηi=ηk|yi, θτ ] and Pr[ηi=ηk|yi, θ]:

H(θτ+1|θτ )−H(θτ |θτ ) =
∑
i

∑
k

Pr[ηi=ηk|yi, θτ ] · log
Pr[ηi|yi, θτ ]

Pr[ηi|yi, θτ+1]

= DKL(Pr[ηi|yi, θτ ], P r[ηi|yi, θτ+1]) ≥ 0

and hence will always be negative. This shows that the likelihood increases at each
step.

5.3 On the identi�cation of Hazard rate models

For single and multi-spell data. TBD

5.4 Random e�ect versus �xed e�ect

TBD (assumptions on the distribution...).

5.5 Dynamic discrete choice with unobserved types

An important application of random e�ect in economics has been in the estimation of
dynamic discrete choice models. Such models are concerned with modeling dynamic
decisions of individuals, see Aguirregabiria and Mira (2010) for a survey of these methods.

In each period agents can choose a discrete action at ∈ [1..J ] and we call sit the state
space of the agent. Agents preference are given by

Et
T∑
τ=t

βτ−tu(ai,τ , si,τ )
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and the Bellman principal gives us that the optimal decision rule is of the form:

V (sit) = max
a∈A

{
U(a, sit) + β

∫
V (si,t+1)dF (si,t+1|a, sit)

}
and where the choice speci�c value is often called the Q-value and is given by

Q(a, sit) = u(a, sit) + β

∫
V (si,t+1)dF (si,t+1|a, sit)

The state space is often composed of observed and unobserved variables sit = (xit, εit)
and usually we observe a pay-o� function yit = Y (ait, xit, εit). The model then speci�es
the u(·) function. The data is then a sequence {ait, xit, yit : i = 1..N ; t = 1..Ti}.

we can then write the likelihood of the model

li(θ) = logPr[ait, yit, xit : t = 1..Ti|θ]

= logPr[ai1, yi1, xi1|θ]
Ti∏
t=2

Pr[ait, yit, xit|ait−1, yit − 1, xit−1θ]

= logPr[ai1, yi1, xi1|θ] +

Ti∑
t=2

logPr[ait, yit, xit|ait−1, yit − 1, xit−1θ]

Real example. Kean and Wolpin (1994) consider a model of labor choices using this
Framework. Starting at age 16, agents choose among 5 alternatives, staying at home
ait = 0),going to school (ait = 4) or one of 3 occupations white collar (ait = 1), blue collar
(ait = 2), military (ait = 3). Utility functions have the form U(a, sit) = ωi(a) + Wit(a),
where the wage Wit is 0 for ait = 0, 4.

This is of course without any permanent unobserved heterogeneity. But we have seen
how to augment a likelihood framework to include random unobserved discrete hetero-
geneity. We then assume that there are K unobserved types which drive potentially the
law of motion F (st|a, st−1, k) and of course the pay-o� function Y and the preference u.

li(θ) =
∑
k

pkli(θ, k)

=
∑
k

pk logPr[ait, yit, xit : t = 1..Ti|θ, k]

which can be estimated by direct minimization, or using the EM.

6 Linear regression with many regressors

This topic relates to model selection, or regularization of the linear regression. This is
relevant in particular when the number of regressor is very large when compared to the
number of observations. Many datasets come with a large number of observables that
can be used to explain a variable of interest. So we consider the following linear model

Y = X ′β + ε
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where we have p regressor and we consider a sample p���n. It is clear that as soon as p > n,
trying to directly solve the system of equation will lead to multiple possible solution. As
you can see this is not the same concept as identi�cation since if p is actually �xed in
the population, then the model will be formally identi�ed, however in a sample, the OLS
estimator might give extremely poor estimates, estimates with a very high variance (that
will depend a lot on the picked sample).

6.1 Stepwise selection

Go through the regressors and add them one by one, choose the best using R2 then select
using cross-validation.

6.2 Ridge Regression

One approach is to penalize the coe�cients of the regression. This is referred to as a
Ridge regression or shrinkage. The estimator is de�ned as:

∑
i

yi − β0 −
∑
j

βjxij

+ λ
∑
j

β2
j

This is not obvious why this would perform any better. We know in particular that
the OLS with λ = 0 is the best linear unbiased estimator. However we might want to
trade a bit of bias to lower the variance.

6.3 Lasso

The lasso proposes a similar approach but instead penalizes the absolute deviation of the
parameter instead of the square of the parameter.

∑
i

(
yi − β0 −

∑
j

βjxij

)
+ λ

∑
j

|βj|

We can compare Lasso and Ridge in the simple case where p = n and X is a diagonal
matrix. In this case it can be shown that OLS gives

Application: Elena Manresa's paper on R&D e�ects

6.4 Principal component analysis

The idea of using principal component analysis is to recover underlying explanatory fac-
tors in the regressors before even starting the regression analysis. Imagine we have a
prior that the X can be represented as a lower dimensional linear combination of vari-
ables. Then we want to look for a vector α such that the following variance is maximized:

X ′α
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To �nd such value with conduct an SVD decomposition of X.

α = arg max
w′X ′Xw

w′w

We want to maximize
1

2
α′Σα− λ(α′α− 1)

where FOC give us
α′Σ = λα

not that then the objective is λ so we should pick the largest eigen value! We do this
in a �rst step, perhaps select the k largest eigen values. We then use this in a regression

caveats: the dimension reduction is not driven by the relationship to Y . This can be
potentially problematic, especially if the residual is very large.

7 Non parametric regression

In this section we are going to look at non-parametric model:

M = {Y = f(X) + ε; f ∈ RR,E[ε|X] = 0}.

We can see right away that the di�culty here will be that the parameter of interest is
in�nite dimensional. The �rst question we ask is wether the model is identi�ed. We see
however that this comes out naturally since

E[Y |X = x] = E[f(X) + ε|X = x] = f(x)

we then want to consider potential estimators for this model. There are three classes of
estimators we can consider:

� A kernel estimator uses a local approach and �ts locally weighted regressions:

fn(x) =

∑
i Yi ·Kh(Xi − x)∑
iKh(Xi − x)

� A sieve estimator will approximate a function using a �nite number of components:

fn(x) =
∑
k

wnkgk(x) where wnk = arg min
∑
i

||Yi −
∑
k

wnkgk(Xi)||

� A tree method tries to approximate the function with piece wise constant functions

fn(x) =
∑
k

ckI[x ∈ Rm]
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7.1 Choice of tuning parameter

In each of the three methods the econometrician needs to choose a smoothing parameters.
a bandwidth h for the kernel estimator, the number of components K for the sieve or
for the regression tree. Given a sample (Yn, Xn), we see that we can always choose such
tuning parameter to �t the data as well as we want. Indeed consider adding more and
more gk(x) to your analysis and when K = N you will get a just invertible matrix.

The parameter can then generate over-�tting in sample. This can be thought of in
term of a bias-variance tradeo� for the estimator. We compute the mean square error of
a given estimator:

MSE(θn) = E(θn − θ)2 = V ar(θn)︸ ︷︷ ︸
variance

+ (E(θn − θ))2︸ ︷︷ ︸
Bias

This is hard to get in general since θ is not known. One way to resolve this problem
is to use cross-validation.

7.2 Kernel estimator

We �rst look at the Kernel estimator:

fn(x) =

∑
i Yi ·K(Xi−xh )∑
iK(Xi−xh )

One can derive the asymptotic properties of this estimator. This might be going
beyond the scope of this notes. Let's report the result:

√
nh
(
gn(x)− g(x)− h2κ2B(x)

) d→ N
(

0,
R(k)σ2(x)

f(x)

)
.

We notice that as h → 0, nh → ∞, we get consistency of the estimator. Two points are
relatively interesting. The �rst is that the estimator has a bias for any positive value of
h.

B(x) =
1

2
g
′′
(x) +

g′(x)f ′(x)

f(x)

this seems intuitive, when h is to large, it is impossible for the estimator to pick large
variations locally in the g() function. Note that we get he following MSE:

h4κ2B(x) +
R(k)σ2(x)

nhf(x)

and so minimizing the MSE gives an optimal rate for h ∼ n−1/5, plugging this back
in gives an optimal convergence for the estimator of n2/5 versus n1/2for parametric esti-
mators.

7.3 Sieve Estimator

suppose that you have a base of function such that m(x)− β′pK(x)→ 0 for all x. Then
we will have convergence in Op(K/n+K−2α). Note that again here you will get for any
�xed K a bias. In the case of polynomial approximation to a smooth function in C∞,
then we get that α = 1.
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7.4 Regression tree

Remember the structure of the repression tree:

fn(x) =
∑
k

ckI[x ∈ Rm]

The tree is constructed using binary splitting. Start with the entire support and
choose a splitting rule (for instance pick a given regressor Xj and �nd a threshold s such
that the MSE is minimized). Then repeat this procedure until each group has a number
of observations less than some number k.

One problem is that some early splits can deliver small RSS reductions but lead to
large gains letter on. Hence it can be very costly to stop with high RSS rule when doing
binary splitting. Example of square with blocks.

Common strategy is then to �t a very �deep� tree, then go back and �prune� it. We
then compute for each sub-tree T ⊂ T0:

T∑
m=1

∑
xi∈Rm

(yi − ŷRm)2 + α|T |

and for a given α there is an optimal sub-tree. α can then be picked using cross-validation
(k-fold or leave-one-out).

7.5 Semi-parametric estimator

Let's look at index models.

Y = g(X ′β) + ε

in this case one can achieve
√
n consistency for the parameter β.

Mansky maximum score estimator
Consider the model

Yi = 1[X ′iβ + ui > 0]

when the distribution of ui is a normal distribution then we have a the probit model.
When it is type 1 extreme value we have the logit model. But what if you are not
willing to make a distributional assumption? Mansky makes the following observation on
average, Yi < Yj should be associated with X ′iβ < X ′jβ. He then proposes the following
estimator:

βn = arg max
∑
i>j

8 Boostrap

Compute con�dence intervals and critical values can be tedious when using asymptotic
formulation. If we could draw directly from the population we could conduct a Monte-
Carlo exercise and recover the distribution of the estimator. In this section we consider
such an approach by sampling from the available sample. Considering a given sample
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Y1..Yn, there are two main re-sampling approach. The �rst is to re-sample n elements
from (Y1..Yn) with replacement, the second is to sample m < n from (Y1..Yn) without
replacement. In both approaches the goal is generate draws from a distribution that
reassembles as much as possible to the population distribution.

The theory behind the bootstrap The data is assumed to be independent draws
from F0(x) = F0(x, θ0) and we consider a statistic Tn = Tn(X1..Xn). The distribution
of Tn is denoted by Gn = Gn(t, F0) = P0[Tn ≤ t]. Asymptotic theory relies on G∞,
instead the bootstrap relies on plugging in an estimate of F0 and uses Gn(·, Fn). Taking
B samples with replacement from Fn, computing Tn,b in each, we can construct

Ĝn(t, Fn) =
1

B

∑
b

1[Tn,b ≤ t]

then what we need for the bootstrap procedure to be asymptotically valid is that

Gn(t, Fn)
p→ Gn(t, F0)

uniformly in t. This requires smoothness in F0 as well as in Gn(·, ·) and consistency of Fn
for F0. In general we get that if we have

√
n asymptotic convergence to G∞, then both

Gn(t, F0) and Gn(t, Fn) do so and so they are also close to each other:

Gn(t, F0) = Gn(t, Fn) +O(N−1/2)

which provides no gain when compared to asymptotic standard error besides the simplicity
of the computation.

Parametric Bootstrap Note that the goal is to approximate F0 and hence Fn is a
good candidate however one can use F (·, θn) where θn is a consistent estimator of θ0.
This is referred to as the parametric bootstrap.

Asymptotic re�nement It can be shown that in the case where Tn is asymptotically
pivotal, meaning that is does not depend on the parameters, then the bootstrap achieves:

Gn(t, F0) = Gn(t, Fn) +O(N−1)

The idea here is that one can get a better approximation of the �nite sample distribution.
At every N, Gn(t, Fn) is closer to Gn(t, F0) than G∞(t, F0). This can be shown using the

Edgeworth expansion which expands Gn(z) as a function of n−
1
2 .

Gn(t, Fn)−Gn(t, F0) = [G∞(t, Fn)−G∞(t, F0)]

+
1√
n

[g1(t, Fn)− g1(t, F0)] +O(n−1)

and then G∞(t, Fn) − G∞(t, F0) = 0 if Tn is asymptotically pivotal, and g1(t, Fn) −
g1(t, F0) = O(n−1/2) delivering an overall O(n−1).
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Failure of bootstrap: One example of the failure even when the estimator is asymp-
totic normal is the nearest neighbor estimator (Abadie and Imbens 2008). It is shown
that the variance of the bootstrap is either too small or too large. Another example is
the estimation of the median.

Bias correction using bootstrap The bootstrap can be used to correct for the bias
of an estimator. In many applications the exact form of the bias E0(θn − θ0) is not
known, however if we consider θ̄∗n, the expectation across bootstraps replications, then
it gives us an estimate of the bias. We can then consider a bias-corrected estimate
θBRn = θn − (θ̄∗n − θn).

Non iid samples There will cases where the data is not exactly iid. For instance
there might be weak spatial correlation. In this case, one might want to bootstrap by
resampling clusters of data to replicate the dependence. More on this later.

9 Fixed e�ect model

Most of the data-generating processes we have considered until now were cross-sectional,
in the sense that the population was some distribution Fx(x) and a sample was n draws
from this distribution. However, many datasets provide repeated measures for each in-
dividual. For instance longitudinal survey track individuals over multiple periods. The
data generating provides us with a sequence of variables (Y1, X1...YT , XT ) for t = 1..T .
Some approaches focus on short T and other on asymptotic as T →∞.

Given that the data provides multiple measurements, we might want to start thinking
about individual speci�c heterogeneity. They are di�erent ways of addressing this prob-
lem. In particular people refer to random e�ect and �xed e�ect approaches. In all cases
we are going to consider modeling unbosbserved heterogeneity with individual speci�c un-
observed characteristics. Consider a DGP F (Y |X), we will then let this DGP be di�erent
for di�erent i inddividuals and denote it in the following way Fi(Y |X) or F (Y |X,αi).
Two main approaches are considered.The �rst one is to treat αi as a random variable and
model the distribution it is coming from such asa F (Y |X) =

∫
F (Y |X,αi)g(αi)dαi. This

is referred to as random e�ect. The second approach considers the αi as parameters
of the model that have to be estimated, these are called �xed-e�ect approaches. Note
that in the �xed e�ect approach the number of parameters αi grows with the sample size,
whereas it might not be the case for random e�ect.

We start by treating the �xed-e�ect model in the general non linear framework. In this
case we consider individual heterogeneity as parameters. Our data is a vector (Y1...YT )
for i = 1..n, t = 1..T . We then have a likelihood model `i(yi) = `(yi; θ, αi) and our
parameter set grows with the sample size. Our MLE is given by:

(θ̂, α̂i) = arg max
1

n

∑
i

∑
t

`(yit; θ, αi).

The gains is that know we do not have to model the relationship between αi and
the rest of the model. What this means is that we can't apply our inference framework
based on �nite parameter inference. In �nite T framework, in general the di�culty in
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estimating αi for each individual will contaminate the estimation of θ, making it biased
even as n→∞.

Incidental parameter bias example

We consider a simple example adapted from Chamberlain. Consider the following model:

yit ∼ N (αi, σ
2),

for which we can write our MLE estimator

`i = −1

2
log σ − 1

2

(yit − αi)
σ2

which gives αi = 1
T

∑
yit and σ̂ = 1

nT

∑∑
(yit − ȳi)2 and then

Eσ̂ = E(yit −
1

T

∑
t′

yit′)

= (1− 1

T
)2σ2 +

1

T
σ2

= σ2 − σ2

T

we notice that in this case, we do not recover σ2 exactly at �x T even if N → ∞.
This is referred to has the incidental parameter bias. In general, for large enough T
and under smoothness conditions, it will be the case that θn will be centered at θT ,√
nT (θn − θT )

d→ N (0,Ω) where

θT ≡ arg max lim
n→∞

1

n

∑
i

E
∑
t

log f (yit|θ, α̂i(θ))

α̂i(θ) ≡ arg max
α

∑
t

log f(yit|θ, α)

and we get that:

θT = θ0 +
B

T
+O(

1

T 2
)

Note that this is quite sever since even in the case where n/T → ρ we get that

√
nT (θn − θ0) =

√
nT (θn − θT ) +

√
nT

B

T
+O

(√
n

T 3

)
d→ N (B

√
ρ,Ω)

9.1 Marginal e�ect

It is often of interest to consider marginal e�ects, such as some averaging of the parameters
and the �xed e�ects ∑

i

m(yi,αi, θ)
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9.2 Group-�xed e�ect estimators

A last approach is to treat the heterogeneity as discrete in estimation (Bonhomme,
Lamadon, and Manresa, 2016). We still consider a �x-e�ect world with f(yi|θ, αi) which
we are interested in, however, in estimation we are going to classify individuals into
groups, and then treat these groups as observed types in a second step. For this to work
we then assume that we can �nd individual moments hi such that hi = ϕ(αi)+

10 Linear Panel

The simple linear model can be written as

yit = βXit + αi + εit

su�cient conditions for identi�cation are that E(εit|Xit, αi) = 0, but actually even
weaker conditions such as E(εi|Xi) = 0 are ok, as we can see that we can construct a �rst
di�erence estimator.

A common estimator is the Within Group estimator:

∆yit = β∆Xit + ∆εit

DYi = βDXi +DEi

where

D =

 −1 1 0
. . .

. . .

0 −1 1


running the regression in di�erences or allowing for dummies for each individual is math-
ematically identical.

βn =

(∑
i

(DXi)
′
XiD

)−1∑
i

DXiDyi

10.1 Omitted variable

one case where this can be very useful is in the case of the presence of an omitted variable.

yit = βXit + γZi + εit

you can think for instance of the case where Zi is a permanent ability, which is unobserved,
but of course correlated with the other regressors Xit. In this case we can see that the
OLS estimator of yit on xit will give:

βOLS =
cov(yit, xit)

var(xit)
=
cov(βXit + γZi, xit)

var(xit)
= β + γ

σxz
σ2
x

in the presence of repeated measure, we can use a �rst di�erence estimator using the
fact that

E[xit (∆yit − β∆xit)] = 0
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10.2 Measurement error in regressors

here we consider the following model

yit = βx†it + εit

xit = x†it + uit

This can be estimated using the following moments:

E [xis (yit − βxit)] = 0

in the case here we also have a correlated �xed e�ect then we use the following mo-
ments:

E [xis (∆yit − β∆xit)] = 0

10.3 Autoregressive model

Consider the following model:

yit = ρyit−1 + αi + εit

with E[εit|yt−1
i , αi] = 0. We can start by looking at the OLS estimator:

ρOLS =
cov(yit, yit−1)

var(yit−1)

=
cov(ρyit−1 + αi + εit, yit−1)

var(yit−1)

= ρ+
1

1− ρ
V ar(αi)

next we can look at the �rst di�erent estimator

=
cov(∆yit,∆yit−1)

var(∆yit−1)

=
cov(ρ∆yit−1 + ∆εit,∆yit−1)

var(∆yit−1)

= ρ+
cov(∆εit,∆yit−1)

var(∆yit−1)

= ρ− σ2
ε

var(∆yit−1)

Using instruments:
Eyt−2

i (∆yit − ρ∆yit−1)

which is consistent even at �xed T.
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Figure 3: Firm money demand

10.4 Example, Firm money demand

11 Recap of important concepts:

1. De�nition of a probability space

2. Notion of convergence (probability, distribution)

3. Central limit theorem

4. De�nition of a model and identi�cation

5. Concept of samples, estimation/inference, CI

6. Properties of estimators, consistency, unbiasedness,
√
n convergence

7. NP regression, tuning parameter, bias-variance trade o�, cross-validation

8. Unobserved heterogeneity with repeated measurement

(a) the incidental parameter problem

(b) Random e�ect versus Fixed e�ect
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A Additional notes

A.1 Integration

Through the document we use a notion of integration with respect to a measure P . Let's
de�ne here precisely what is meant by that.

As in most textbooks we start by de�ning the integral for simple functions. Simple
functions are function that take a �nite number of values. For instance consider a partition
of Ej of Ω with Ej ∈ F then the following function is simple

φ(x) =

n∑
j=1

1[x ∈ Ej ]cj

and then we de�ne the integral for such function as∫
φdP =

∑
j

cj · P (Ej)

and then for any positive function we de�ne the integral as∫
fdP = sup

{∫
φdP s.t. φ simple and φ ≤f

}
�nally any function f can be written as the di�erence of two positive function f =

f+ − f− and so the integral de�nition follows from there.

A.2 o and op notations

Xn = o(Rn) means that Xn = YnRn and Yn
p→ 0

also we have that (1 + x)α = 1 + αx+ o(x2)
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A.3 KL divergence

Let's show that it is always positive

KL(p, q) =

∫
p(x) log

p(x)

q(x)
dx

= Ep log
p(x)

q(x)

= −Ep log
q(x)

p(x)

≥ − logEp
q(x)

p(x)

= − log

∫
q(x)dx = 0

A.4 Linear algebra refresher

� Matrices, product, rank, eigen value decompositions

A.5 Bellman principle of optimality

TBD
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